Testing AI Devices
Challenges and Trends

Martin Dresler
Sept 27, 2019
Contents

01 Technology Trends 2019+

02 AI Device Trends

03 Testing Challenges
Technology Trends 2019+
Moore’s Law continuing

- 7nm → 5nm → 3nm **Roadmap on Track**
- Transistor density scaling on track **until 2050**

- Major performance growth through **parallelization**
- **3D structures** required
- **Advanced packaging** becomes a technology driver

Source: HotChips 2019 - Philip Wong, CTO
3D Packaging

HPC/AI
- Memory Wall → Most energy for data transfer
- On-chip caches → ~4G at 1.4nm node
- HBM
- Chiplets + 3D stacked memory for fast data transfer

• 3D System on Integrated Chips (e.g. SoIC)
 • SoIC enables e.g. chip-partitioning of logic and cache memory like SRAM

Courtesy of TSMC - SemiWest 2019

Courtesy of ASM
Chiplets

- “Opportunity to become **less node-dependent**” – Philip Wong TSMC
- **CP test coverage** is critical
- **System test coverage** at FT and CP
AI Device Trends
AI / (High) Performance Compute Landscape

Cryptocurrencies

Server Farms

Edge Computing

Autonomous Cars
AI Trends

AI is moving from general purpose to custom

System Companies

• Tech industries biggest companies bring chip design in-house

• Drivers: cost, risk mitigation, better SW integration, differentiation
AI Market Segmentation

Power Consumption

Server AI

CPU

Accelerators like GPU, ASIC, FPGA, TPU, etc

High-Speed Switches

Training

Inference

Edge AI

Automotive AI (ADAS)

Mobile AI

Audio, Image & Sensor AI

Pin count
AI Market Segmentation

Power Consumption

1000W

100W

10W

1W

Server AI

Examples:
AMD CPU Rome
nVidia GPU Tesla
NVLink Switch Willow

Edge AI

100

enable real time actions

Image AI
(surveillance, expression, robots, drones)

→ e.g. Jetson Edge AI

Audio AI
(noise reduction, audio/write/ctrl)

→ RF & Analog might be integrated

Sensor AI
(machine state, body monitoring)

Automotive AI is like Edge AI, but:
- more power
- high performance
- highest quality, 0 DPPM
Testing Challenges

V93000 – Leader in HPC/AI Test → Since 1999
Key Testing Challenges for 7nm+, 5nm, 3nm …

COST

DPPM
Fundamental Testing Challenges

1. New technologies & higher complexity drive deeper scan
 - License free pooling and fan-out technology, unlimited speed
 - Largest Scan per pin

2. Superior mix of DPS instruments
 - Simple configurations w/ two types: high-density vs high-power
 - Best in class step response for 1000A and more → yield
 - Large installed base at OSATs to lower CoT

3. Test cell with active thermal control
 - For accurate, fast & stable measurements → best in class ATC Test cell temperature trigger tool incl. patented smart pre-trigger

4. High-speed Instruments
 - Need to cover next gen HSIO interfaces 112G PAM4.
Tester Requirements for Different AI Segments

1. Edge AI
 - **Scalable platform** to start from low-end Edge AI
 - **Attractive CoT** → optimized VM usage (save up to 80% VM)

2. Automotive AI
 - **Scalable platform** to span from low-end to high-end
 - **Attractive CoT** → optimized VM usage (save up to 80% VM)
 - **One stop shopping** incl handler/ATC and SLT (DPPM & CoT)

3. Server AI
 - **All fundamental performance compute test requirements**
 - **Future proven**
Paradigm Shifts in ATE

Rack & Stack

Functional Test

Structural Test

System Test

NEXT: Age of Convergence (Mobile, Compute, Infrastructure, Automotive)

System Components on DUT board + SLT

Scan through functional IO

200 mm

300 mm

Mainframes

Apple II

IBM PC

Windows 3.1

Multimedia PC

Windows 95

Netscape

Networked PC/Server

UMTS

Mobile

iPhone-1

Netscape

Internet Infrastructure

Rack & Stack

Scan through functional IO
Cost + DPPM Reduction across Workflow

Automated EDA flow
Data Collection
System Test Cases

On-Die System Test
SoIC/CoWoS/Chiplets
Scan through functional IO
USB/PCIe/1149.10
Yield Learning

Massive Parallel Test
x16 → x24 → x32
Reduced Pin Count

Scan Over HSIO
Scan over PCIe/USB
1149.10
System Test

System Level
System Level test incl.
Peripherals
Only affordable if high
coverage of previous steps

Design Verification

Wafer Test
W% Wafer Yield

Packaging

Final Test
FT% Final Test Yield

System Test
ST% System Test Yield

$WP
Cost of Wafer Probing

$P
Cost of Packaging

$FT
Cost of Final Testing

$ST
Cost of System Testing

$Scrap

Relative cost and DPPM reduction across different stages of the workflow.
1. **Need a proven, scalable and flexible test solution**
 - Device complexity will grow
 - Heterogenous integration → incl power, precision analog, HSIO, RF

2. **New test methodologies will be required**
 - On-die system level test
 - Scan test over HSIO
 - Bigger is not necessarily better

3. **Optimized workflow**
 - Test cell with active thermal control >>500W
 - Need for die level prober?
 - Smarter SLT with joint ATE test strategy

4. **Challenging, but promising future …**
 - Building a connected & intelligent world will drive innovation and growth
Questions?

contact: martin.dresler@advantest.com