Challenges In High Voltage IC Design for ATE Applications

Test Technology Symposium 2019 Jef Thoné – Mike Wens

MinDCet: Power Conversion ASIC Design and Production, ISO9001

Turnkey Power ASIC Production

Power Module Development

ASIC Design and Layout

MADMIX/MADCAP
Inductor/capacitor measurement

Measurement capabilities

In house

- Recent Investments Q2 2019:
 - Teradyne ETS-88 ATE for smooth flow from characterization to production testing
 - Chroma FT3110S pick & place handler for smallvolume in-house tri-temp (-40°C-150°C) testing and pre-production testing
 - Available from Q4 2019

Measurement systems under development

- MADCAP: non-linear large signal capacitor measurements, expected Q1 2020
- MADTHOR: 200V transistor analysis system (capacitance analysis and transistor curves), Q2 2020

EU Targets Greenhouse Gas Emission

Fig. 1: Greenhouse gas emissions from transport

https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-11

EV and WideBandgap

X-factor applications

ST / Cree SiC FETs

Model 3 inverter. Note two rows of rectangular devices

Taken from Motor Trend photos of Munro Ass. teardown

TTS 2019 confidential

WBG properties

- Adoption of WBG (wide-bandgap) materials (SiC and GaN) improve efficiency of electrical drives
 - Faster switching / less reverse recovery => reduced switching losses
 - But : specific gate driver / isolator / isolated supplies / DC bus are needed
 - > 2CV with a Ferrari engine: bad idea

 ATE need to have similar or better specs than supporting WBG components

Ideal interface switch

•
$$R_{on} = 0$$

- $R_{off} = inf.$
- L = 0
- C = 0
- Imax = Inf
- Vmax = inf.
- Area = 0
- Rth = 0

Opposing interface requirements

What is a good compromise?

Low R_{dson}

- Rationale:
 - Conduction losses
 - RC
 - Diode conduction at rated I
- By :
 - Large W/L: R_{dson} ~ L/W
- Dependencies:
 - Area ~ L*W (cost)
 - Interconnect (metallization and bonding)

High current capability

- Rationale:
 - Conduct current within EM limits
- By:
 - Distributed current
 - Custom layout
 - Common sense + FEA
 - > R3D (Silicon Frontline)
 - Magwell
- Dependencies:
 - Metallization EM limits
 - Area / aspect ratio
 - Packaging

Small Area

- Rationale
 - Multi channel integration
 - Low C, L and R
- By
 - Architecture
 - Technology (Si, GaN, SiC, hybrid, ...)
- Dependencies
 - Die yield ~ exp^-Area
 - Thermal conduction ~ Area

AD (critical area A * defect density D)

Good thermal conduction

- Rationale:
 - Keep Tj under control (lifetime)
- By:
 - Area/dimensions
 - material stack
 - Package choice
 - FEA thermal simulation (transient/static)
- Dependencies:
 - Transient power peaks
 - Driver location
 - Thermal interface materials
 - Tech choice

Good thermal conduction

Custom
Integrated Power
Management
Solutions

E.g. 0.06mm² driver on 4mm² Si die

- dT @ 2us = 4.5 K
- dT @ 2 s = 225 K

TTS 2019 15

Good thermal conduction

Packaging is key

High Voltage Capability

- Rationale:
 - Meet the DUT voltage requirements
- By:
 - Technology choice
 - Custom layouts (metal clearances)
 - Custom devices
 - Custom DRC
 - Hybrid technologies (e.g. GaN-on-SOI)
- Dependencies:
 - ~ Area
 - SOA operation
 - Isolation
 - Clearance / creepage beyond package
 - ⇔ thermal requirements

Schematic cross-section of GaN-on-SOI structure, featuring buried oxide, oxide filled deep trench, local substrate contact and p-GaN HEMT devices. Picture courtesy IMEC.

Floorplan of the symmetrical GaNon-SOI 32 mOhm/10A halfbridge

Low leakage

- Rationale:
 - Loading of Hi-Z DUT
 - Accuracy of VI measurements
- By:
 - Technology choice
 - Architectural choices
 - Leakage cancellation circuits (1st order) 10⁻¹⁰
 - Calibration
- Dependencies:
 - ~ Area
 - ~ Exp(Temperature)

GaN on SOI 200V FET Leakage (IMEC)

TTS 2019 confidential 18

Low charge injection

- Rationale:
 - Limit loading of DUT
- C_{iss} → defines gate switching losses
- C_{oss} → defines output switching losses
- $C_{rss} = C_{gd}$
- All non-linear vs ds/ gs voltage

Input capacitance $(C_{iss}) = C_{gd} + C_{gs}$ Output capacitance $(C_{oss}) = C_{ds} + C_{gd}$ Reverse transfer capacitance $(C_{rss}) = C_{gd}$

Definitions of charges

JEDEC standard 24-2

•
$$Q_g = Q_{gs} + Q_{gd} + C_{gs}$$
 * $(V_{gs,pl2} - V_{gs,pl3})$

•
$$Q_{gs,th} = C_{iss} * V_{gs,th}$$

$$Q_{gs} = C_{iss} * V_{gs,pl1}$$

$$Q_{gd} = C_{gs} * (V_{gs,pl1} - V_{gs,pl2})$$

$$+ \int C_{dg}(V). dV_{ds}$$

•
$$Q_{ds} = \int C_{ds}(V) \cdot dV_{ds}$$

•
$$Q_{ci} = Q_{qd} + Q_{ds}$$

- Dependencies:
 - Area
 - Technology defined!
 - Independent of switching speed!

Figure 16. Typical Capacitances vs. Drain-Source Voltage (0 - 200 V)

Low capacitance

- Rationale:
 - Limit capacitive loading on the DUT
 - Limit charge injection
 - Routing can contribute up to 300%
- By:
 - Parasitic extraction, post layout
 - Smart layout strategies
- Dependencies:
 - Process metal stack

Low crosstalk

- Rationale:
 - Limit distortion of adjacent DUT channels
 - Limit loading of high impedance DUT channels
- By:
 - Limit interface capacitance
 - Low impedant return paths
 - Post layout extraction
- Dependencies:
 - Metal stack
 - Routing impedance

Conclusions

- New technology adoption (SiC/GaN) defines future ATE interface requirements
- IC Design of VI's and MUXes for ATE: multi-dimensional design challenge
- If you don't like to make trade-offs :

If you need help to make the trade-offs: call MinDCet!

What can we do for you?

Headquarters

MinDCet NV

Researchpark Haasrode

Romeinse Straat 10

3001 Leuven

Belgium

www.mindcet.com

info@mindcet.com

t: +32 16 40 95 28

t: +32 16 40 14 88

f: +32 16 40 83 38

