

SE-DPIN: Challenges in IO channel development

Harry Ramaker / Paul van Ulsen

Today's Challenges

Many trends that push up development costs of ATE

- Semi market is growing but with 'ripples'
- Chip complexity increases
- ATE market is 'Stabilizing'
- Shorter life times
- New markets coming up
 - ► Specifications not well defined yet

Test Solution Development costs go up → STTC idea born!

Typical instrument challenges

Technical

- ▶ Nothing is standard in ATE except 48V
- ▶ How to get as many channels as possible on a board within ...
 - Instrument board space
 - Power, Cooling, etc.
- Easy integration with Customer platform
- Easy & Fast calibration
- ► Robust & Reliable

By the way... it should cost nothing, and yesterday ready ;-)

HD Instrument development requires use of 'ATE-asics'

Another variable in the game

Typical development steps

► Characterization → EVM → one channel PoC → Instrument

Our approach

- ► Create high-level design
- ► Engage with suppliers to find new ASIC technology/developments
- Develop characterization boards
- Develop customer EVM boards
- One channel proof of concept based on EVM
- Develop complete channel

Example: Functional reuse of Salland DPIN technology/IP

High density Low cost IO - IP Project

Digital channel Building block design

Target Specification (200+MHz)

Pin Electronics Driver/Comparator (500MHz)

- ▶ Dual Mode3-level Driver with Hi-Z Capability (DVH, DVL,
- ▶ 5 Current Ranges (±2µA, ±20µA, ±200µA, ±2mA, ±50mA)
- Programmable Voltage and Current Clamps

Resistive Load Function (5 Selectable Resistor Values)

Per Pin Active Load

- ▶ ±24mA Maximum Current
- Independently Programmable Current Source, Current Sink and Commutating Voltage levels

Per Pin Timing Deskew

- ▶ Propagation Delay Adjustment
- ▶ 5ns Delay Adjustment Range

Per Pin PMU

- ► FV, FI, MV, MI
- ▶ 4 Quadrant Operation
- ▶ 2V to +6V FV/MV Range

Drive formats (Flexible edge placement at 200MHz Vector)

50Meps 100Meps 200Meps 400Meps 500Meps Format NR \checkmark \checkmark X X RL \checkmark \checkmark \checkmark X RH \checkmark \checkmark \checkmark \checkmark X \checkmark \checkmark SBL \checkmark \checkmark \checkmark SBH \checkmark \checkmark \checkmark \checkmark \checkmark SBC \checkmark \checkmark \checkmark \checkmark \checkmark

The xx Meps represents the number of events per second.

Development steps

For FPGA based Timing Generator/Pattern Generator

POC Timing Generator

Driver signal EVM hardware

1

1

RL

D0 D1 D2

2

0

SBC

D0 D1 D2

Vector

Data

Drive

11 October 2019

3

1

RL

D0 D1 D2

Moving edge 39 PS

Channel PoC results

• Pattern generation PoC

- ▶ Based on a Mystery EVM and a FPGA Evaluation board
- ▶ Generated waveforms with a pattern-rate of 200MHz on eight channels.
- The different waveforms are made with FPGA timing generator
 RL,RH,NR,SBC,...
 - ► KL,KH,NK,SBC, ...
- Edge placement on the fly
 - ▶ Resolution of 39ps.
- The next step
 - ▶ Create a Reference Design with 64 channels on a 100x120mm PXIe board.

DPIN Architecture

Hardware

- Scalable architecture
- <u>Blocks</u> of 16 channels (1 FPGA, 2 Mystery's, ADC and Memory (12Gb))
- ▶ Boards with 1..4 blocks
- Multiple Boards in a rack

Timing generation

- ► Every edge is generated using a jitter-free 400MHz clock.
- ▶ The pattern Sequencer/Timing generator is running at 200MHz.

Synchronization

- One board, local synchronization signals
- Multiple boards, Synchronization signals over backplane to Synchronize boards

Target Timing specification

- Edge Placement Accuracy Drive ±250ps
- Edge Placement Accuracy Compare ±500ps
- Pin-to-Pin skew ±500ps
- Resolution 39ps

Accuracy is how close a reported measurement/setting is to the true value. Resolution is the smallest step/change that can be measured/set.

Synchronization

On board pattern sequencer synchronization

- Synchronization lines to each blocks
- ▶ Data Communication between blocks is done using an Aurora Bus.

Board to board pattern sequencer synchronization

- Synchronization lines to each board on backplane
- ▶ Data Communication between boards is done using a PCIe bus.

Pass/Fail information

 Conditional statement information in pattern sequencer are shared via backplane to each block

Reference design, PXIe IO Channel card

64ch, max 200MHz flexible edge placement

Dimensions: 100mm*160mm

